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Abstract

Let D be a Hessenberg matrix and 2 the closed operator associated to it. In this work, we
study the approximation of the resolvent of & by the resolvents of the truncated matrices D,
of D. A concept of determinacy is introduced analogous to the one for Jacobi matrices. We
apply our results to some questions in rational approximation.
© 2003 Elsevier Science (USA). All rights reserved.
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0. Introduction

A Hessenberg matrix is an infinite matrix D = (dj;);;_, such that d;; =0 for
j>1i+4 1;in this paper we assume additionally that it satisfies d; ;1| #0. This paper is
devoted to the approximation of the resolvent of a Hessenberg matrix D by the
resolvents of its finite sections D,. Specifically, we consider a closed operator
9l — 1, associated to D by

domain(2) ={xel,: Dxebh},

9x =Dx

*Corresponding author. Fax: 416-978-4107.
E-mail addresses: lrobert@math.utoronto.ca (L. Robert), Ismcu@yahoo.com (L. Santiago).

0021-9045/03/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0021-9045(03)00067-4



L. Robert, L. Santiago | Journal of Approximation Theory 123 (2003) 68-88 69

and we look for conditions to ensure the strong convergence of operators
H;R(ZaDn)*Hﬂ_}R(Z?@)*? (1)

where D, = (d,/)fl;lo are the finite sections of D, R(z, D,), R(z,2) are the resolvent
functions of D, and & and I, : , »C" is the projection IT,x = (x¢, X1, ..., X,_1)".

As we will show below, one way to rephrase (1) is to say that the finite sections
method converges for D' —zI. There is an extensive literature about the finite
sections method. An account of the results in this area can be found in [3], with
emphasis on the case of Toeplitz operators.

Convergence (1) is important in problems arising in rational approximation,
particularly in the convergence of Padé approximants and of asymptotics for
orthogonal polynomials. When D is a Jacobi matrix, (R(z,D,)),, is the nth Padé
approximant of (R(z,2)),,, and if D is real and determinate, Stieljes’ Theorem
states that (1) holds for every ze C\R (see [12]). When D is a perturbation of a real
Jacobi matrix, an arbitrary complex Jacobi matrix or a banded matrix, convergence
(1) has been studied by a number of authors, such as Lopez, Beckermann,
Kaliaguine et al., in papers [1,2,8]. In all these works extensive use is made of the
connection between these matrices, orthogonal polynomials and Padé approximants.
In this work we generalize some of the results proved in the previously cited papers.
Our methods are closely related to theirs, particularly to [2].

In [14] we developed a general setting for the study of orthogonal polynomials and of
infinite simultaneous Padé approximation. This has motivated our interest in proving
convergence of type (1) for Hessenberg matrices, since most of the relevant objects of
that theory can be written in terms of a Hessenberg matrix and its finite sections. The
paper [14] contains a number of applications for the theorems proved here.

This work is organized as follows. Section 1 introduces the definitions and
notation that will be used throughout the paper. Most of these definitions are
borrowed from the theory of orthogonal polynomials. In particular, a generalization
of the concept of determinate Jacobi matrix to Hessenberg matrices is presented and
an invariability theorem is proven.

In Section 2 we prove the main theorems on strong convergence of the resolvents
of the finite sections of a determinate Hessenberg matrix to its resolvent function.

Section 3 contains applications to obtain asymptotics for orthogonal polynomials.
We will be interested in what happens to orthogonal polynomials when perturbing
their recurrence coefficients. Theorems 6 and 7 generalize results of Nevai and Van
Assche for orthogonality in the real line [11,15]. The theorems of Section 2 are also
applied to obtain convergence of the simultaneous Padé approximants associated to
a band matrix. This extends previous results of Kaliaguine [7].

1. Hessenberg matrices

We call an infinite matrix D = (d; ;);"_, with d; ;€ C such that d; ; = 0 for i>; + 1
and d; ;41 #0, a lower Hessenberg matrix.
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1.1. Hessenberg matrices as operators in I

Let us denote by /, the Hilbert space of infinite column vectors x = (x, X, ...)t7
x;€C satisfying
o0
Z ‘xi|2 < 0,
i=0
and denote by Cj the dense subspace of /; formed by the vectors with a finite number
of nonzero components.

Consider the action of the infinite Hessenberg matrix D on an infinite vector
defined by the usual matrix product Dx. This is well defined since each component of
Dx is computed by a finite sum of products. In this way we can associate to D an
operator & : b — 1,

domain(2) ={xel,: Dxeh},

9Yx = Dx.

We also define the operator # with domain C, such that #x = D'x, xe C,.

Theorem 1. The operator & is closed and defined on its maximal domain of definition.
Moreover, one has that 9 = H*.

Proof. The operator »# is densely defined in C,. Therefore, # has an adjoint
(Theorem II1.5.28 of [9]). It follows from the identity

<Dan’>:<x7DIJ’>7 XG[Z, yECO
that 2 is the adjoint of s, and thus it is closed. [

Remark. Notice that, unlike &, the operator # is not in general closed or even
closable. It is closable only when & is densely defined.

The same argument as in the theorem above shows that to any infinite matrix
A = (a; ;)" with a; j = 0 for j>i+k for some keZ, one can associate a closed
operator .o/ defined on its maximal domain. On the other hand, to every bounded
operator 7 can be associated the infinite matrix 7 = (t; ;) with #; ; = (T e;, ¢; ),
where {e;}.”, denotes the canonical basis of b; that is, e; = (9;),-,- We will make
frequent use of this correspondence between matrices and operators throughout this
paper (we use caligraphic fonts to denote operators). One has to be careful with this
correspondence, since composition of operators does not always correspond to
products of matrices. However, we do have the following:

If A is a Hessenberg matrix corresponding to the maximal closed operator </ and %
is a bounded operator with matrix B such that range(#)cdomain(.s/) then AR is
bounded with matrix AB.
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Here is the proof: /4 is closed and defined everywhere, so it is bounded. Let
x€lh, then o/%x = o/ (Bx) = ABx, hence the matrix of /% is AB. Though not
explicitly stated, we will make frequent use of this fact.

Now that & is closed, this allows us to talk about its spectrum ¢(2), the resolvent
set Q(2), the resolvent function R(z,Z) = (zI — #)”" and related concepts.

We end this subsection discussing the relation between upper Hessenberg matrices
and cyclic operators.

Let o7 be an operator in /; with dense domain S, such that .o/S<c.S and .o has a
cyclic vector veS; that is, span{.«/'v, i =0, ...} is dense in .

Theorem 2. The operator </ is unitary equivalent to an extension of the operator H
associated to the transpose of a Hessenberg matrix.

Proof. By the Gram—Schmidt process applied to the sequence {&/iv}[ﬁo find an
orthonormal sequence {v;} . Since v is cyclic, {v;} .2, is an orthonormal basis of /.
Define the unitary operator % such that %e; = v;. Then the domain of %*./%u
contains Cy and %" .</%Ue;espan{e;, j =0, ...,i+ 1}. Thus, the matrix of %" ./U
with respect to the canonical basis is the transpose of a Hessenberg matrix. [

Suppose that the domain of .o/ is span{.«/'v,i=0,...}, then .o/ is unitary
equivalent to #. Define the sequence of finite-dimensional subspaces S, =
span{.s/'v, i =0...,n} and let 2, be the orthogonal projection in S,. Let us write
o/ = Pyo/|g . Then the convergence (1) implies (we change Z by z)

P'R(z,o/,)Py— (R(z, o))",

When the above convergence holds we say that the finite section methods
converges for .7 — zI and the sequence of projections Z,,. If ./ is closable and .o7
denotes its closure then the right member in the above limit becomes R(z, .o7 in)-

In the sequel we restrict our analysis to Hessenberg matrices, particularly to lower
Hessenberg matrices. However, the above remark shows how the results to be
proven in Section 2 can be reinterpreted as providing a suitable sequence of
projections Z, to apply the finite sections method to cyclic operators.

1.2. Orthogonal polynomials

To the infinite Hessenberg matrix D we associate a sequence of polynomials
{pi(z)}Z, defined by the recurrence relations, py(z) = 1 and

n+1

an(Z) = Z dn, ipi(z)v
i=0

which can be written in vector form as
Dp = zp, (2)

where p = (po, p1, ...)"
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Since deg p, = n, these polynomials form a basis of C[z] and we can define a
complex-valued linear functional A : C[z,z] - C by

A (pnp—mt) = 5n,m .

The functional A is positive, that is, A(pp) >0 when p#0. Thus, <{p,q> = A(pg) is
a scalar product in C[z] and it is clear that the sequence {p,},-, is a sequence of
orthonormal polynomials with respect to this scalar product.

Example. Suppose that D is a real, symmetric and tridiagonal matrix (a real Jacobi
matrix) with d; ;11 >0. Then, by (2), the sequence {p,},-, satisfies a three term
recurrence relation, and by Favard’s Theorem there exists a positive measure p with
infinite support and finite moments such that

o0

A@@J»:/‘medmm (3)

— 00

and thus

[%m@mﬁMMO=%w

o0

Hence {p,},-, is a sequence of orthonormal polynomials in the real line.

Let us extend the functional A to infinite matrices by applying it to each entry (this
is clearly an extension if we identify the space of polynomials with the infinite
matrices that have zeroes in all entries, except possibly in the upper left corner). It
can be checked that left and right multiplying scalar matrices, enter in and out of the
parenthesis. That is, whenever the product AP(z,z)B is well defined, it follows that
A(AP(z,2)B) = AA(P(z,Z))B, where P(z,Z) is an infinite matrix with entries in
Clz,z] and 4 and B are infinite scalar matrices. This will allow us to take advantage
of the matrix calculus and of a compact notation in proving the next formulas. Also
notice that if 4, B are Hessenberg matrices and X is an arbitrary infinite matrix, then
the matrix products AX and XB' are well defined and (4X)B' = A(XB').

Define the infinite matrix

DN(Z> _ At <p(t) — p(Z) mtst)7
t—z
where (S); ; = (0;,j+1) is the infinite shift matrix. From the orthogonality of the

polynomials follows at once that D(z) is lower triangular. This matrix plays an
important role in the study of D because D(z)S is a right inverse of D — zI and it is
closely related to the resolvent of 2. Namely, we have the following matrix formulas:

(D —zI)D(z) = S, (4)
R(z,D) = —D()S + p(z)a(2)", (5)

where R(z, D) denotes the matrix associated to the operator R(z,Z) and q(z) =
etR(z, D).
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In order to prove (4) we take D — zI inside the parenthesis in
1) — R
(D — zI)A, (MP(Z)IS’)
— Z

and use the fact that (D — zI)p(t) = (¢ — z)p(¢). To prove (5) we need the following
lemma.

Lemma 1. Let W be a Hessenberg matrix and A an arbitrary infinite matrix. Then the
equation

WX = A (6)

has a unique solution Xy with the first row equal to zero. Every other solution is of the
form X = Xy + vx°, where v is the unique infinite vector such that Wv =0, vy = 1, and
X" is the first row of X.

Proof. By (4) it is clear that X, = I#(0)S4 is a solution of the given equation with
the first row equal to zero. Also, observe that every solution of Wx = 0 is of the form
x = vu with ue C. Thus if WX = 0 this implies that every column of X is of the form
vu; and X = vu'.

Let X be a solution of (6). We have W (X — Xy) =0, thus X — X, = vu'.
Comparing the first row on both sides we get u’ = x°, the first row of X. O

Now (5) follows from the previous lemma applied to the matrix identities
(D —zI)D(z)S =1 (zI — D)R(z,D) =1,

for zeQ(2). Here we take W =D —z[ and 4 = I.

When D is a real Jacobi matrix, the elements of D(z) are just the so-called “shifted
polynomials”, (lj(z))m . =p._(2). To keep consistent with this case, we use the same
notation for the entries of a general D(z).

1.3. Determinate Hessenberg matrices

A real Jacobi matrix is said to be determinate if the moment problem associated to
the functional A is determinate; that is, there is a unique measure u such that (3)
holds. This is equivalent to

S (@ + @) = oo, ™)

n=0

for some zeC.

The Theorem of Invariability states that if (7) holds for some zy e C then it holds
for every ze C. Moreover, if the Jacobi matrix J’ is a bounded perturbation of J then
they are both determinate or indeterminate (see [12]).
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For complex Jacobi matrices, (7) is taken as the definition of determinacy.
Beckerman studied determinacy in this case in connection to proper matrices [2].
Again, a theorem of invariability holds, as is proven by Castro Smirnova [5].

Here we use an analogue of (7) to define determinacy for Hessenberg matrices. We
show how our definition agrees with the one for complex Jacobi matrices and we
prove an invariability theorem.

Definition 1. Let Z(z) denote the operator associated to the matrix D(z). We say
that the Hessenberg matrix D is indeterminate if and only if Z(z) is a Hilbert—
Schmidt operator for some zeC.

Recall that a bounded operator .« of matrix 4 = (a; ;);";_, is said to be a Hilbert-
Schmidt operator if Ziof,‘:o |a,-,j\2 < oo [6]. Since pj(z) = dn_—]Ln (this is not difficult to
prove from the definition), a sufficient condition for a Hessenberg matrix to be

determinateis >, |d,? ,| = co. In particular, every bounded Hessenberg matrix is
determinate.
When D is a Jacobi matrix one has the formula
D(z)S = §'D(z)" = p' (2)p'(z) — p(2) (0" (2))", (8)

with p'(z) = D(z)e;. This formula can be deduced from the definition of D(z)
applied to this case. It follows from this formula that % (z) being a Hilbert-Schmidt
operator is equivalent to

o0

Y (@) + o)) < o0,

n=0

and thus for Jacobi matrices our definition of determinacy agrees with the standard
one.
In order to prove invariability of determinacy we need the following lemma.

Lemma 2. Let Dy, D, be Hessenberg matrices such that D, = Dy — A with A a lower
triangular matrix. Then
D>(z) = Dy(z) + Di(2)SAD;(z).

This is the so-called “‘comparison equation” which has been noted before for real
Jacobi matrices by Van Assche [15]. In [15] this formula is used to prove several
perturbation theorems.

Proof. We have
(Dy — zI)(I — Dy(2)SA)Ds(z) = (D5 — zI)Ds(z) = S'.
Hence (I — Dy(z)SA)Ds(z) and D(z) are both solutions of the equation

(D) — zI)X = S" with the same first row equal to ey, and by Lemma 1 they are
equal. [
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Theorem 3. Determinacy of Hessenberg matrices is invariant under lower triangular
bounded perturbations.

Proof. Write D, = D; — A with A lower triangular and bounded and &, (z) Hilbert—
Schmidt. Then by the comparison equation

(I — Dy(2)SA)Ds(z) = D (2).

The operator I — &,(z)SA is a compact perturbation of the identity. Therefore, if
0ea(I — 21(z)SA) then 0ea,(I — Z(z)SA). But I — D;(z)SA is a lower triangular
matrix with ones on the main diagonal. Hence I — Z,(z)SA is injective and we
conclude that it is invertible. The matrices (I — D;(z)SA) ™' D, (z) and D(z) are both
lower triangular and satisfy the same equation (D, —zI)X = S’. Hence they are
equal; that is,

Ds(z) = (I — Di(2)SA) ' Dy (2).

Now since Z1(z) is Hilbert-Schmidt, so is Z,(z). O

Corollary 1. If for some zoeC, %(zy) is a Hilbert—Schmidt operator, then J(z) is
Hilbert—Schmidt for every zeC.

Proof. If we take Dy = Dy — (z — zo)I then it is easy to see that Ds(zy) = Di(z).
Now the result follows from the previous theorem. [

2. Finite sections method for Hessenberg matrices

We denote by I, the n x oo matrix
Hn = (60,61, ...,enfl)t.

To every n x n matrix M we can associate the infinite matrix IT, MTI, coincident
with M in the upper left corner and with zeroes everywhere else. In the sequel, when
talking about a finite matrix as infinite, for example R(z, D,), we always mean the
infinite matrix obtained through IT,. Also, for an infinite matrix 4, we write (4), =
IT,AIT), for its finite sections. The same conventions apply for finite and infinite
vectors.

For a sequence {7 ,},-, of bounded operators in /,, we write 7 ,—.7 meaning
convergence in the strong topology of operators; that is, pointwise convergence.
Whenever the convergence is understood in a different sense, this will be specified.

A well-known theorem of Kantorovich states that if .o7, o7, are bounded operators
with .o/, — .o/ and ||.Z,'|| < M, then ./ is invertible and .«/,' —.«#~!. In particular,
this theorem can be applied to (4),,, the finite sections of 4. In the next two theorems
we prove analogues of this result for determinate (but not necessarily bounded)
Hessenberg matrices. These theorems generalize classical ones for real Jacobi
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matrices and more recent ones for complex Jacobi matrices and banded matrices
(see [2, Theorem 4.3, Corollary 4.4]).
We start with a lemma proving that for Hessenberg matrices one has that
(27", — D; ! is always of rank one. We use the notation
1, =
(z) = e D(z)S
1(2) = (D))

n
}",‘7./'(2) = ej’.R(z, D)e,-.

Lemma 3. We have the following matrix identities:

(R(2,9)), = R(2,Dn) = ps(q, — ) for zeQ(D,) nQ(Z), ©)
(R(2,Dn)), = R(z, Din) = Pua((7tn),, = 7m)  for 2 Q(Dy) N (D), (10)

Il 54+1((R(z,2)), — R(z,Dy))
1 !
- rn—k,n(z) +p2:/f+l (Z)I_InkarlR(Z7 @)enfk(enR(Z, 9))}1 (1 1)

Jor zeQ(2)nQ(D,) and nzk — 1 =0.

Proof. From (5) of Section 1 we have
(R(z, D)), = —(D(2)S), + Pa(2)4a(2)- (12)

From (4) we have

(Dy — z1,)(D(2)S + ey_1dn_1 4(€,D(2)S),, = I,
hence
(D = zL)((D(2)S), = Pu(2)T(2)) = I,
so that
R(z,D,) = —(D(2)S), + Pa(2)7a(2). (13)

Now (9) and (10) are readily obtained using (12) and (13).
Starting from (5) and performing some straightforward calculations, the following
identities can be obtained:

Pn—k+1 (Z)(ank(z) :nnkarlR(Z, 9)6,,,](, n=zk — 120,

Pn(2)qn-1(2) :rn—k.,n(z) +p2:11(+1(2)a nzk—1=0,

(€,R(z,2))

ne
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We use these identities to write the right side of (9) like in (11)
qn*k(z) (e;R(Za 9))n

qnfk(z) Pn(Z)

,—k+1R(z, 2)en—r (e, R(z, D))

n
— . O
nkn(Z) + PZ:ITH (z)

I, k1P, (q, — ) = Pn7k+1(2)

Definition 2. For an infinite matrix 4 and an infinite sequence of indices
S<={0,1, ...} define the sets:

0s(4) = {z timsup [R(z,(4),)] < |,

T(4) ={J T((4),) = {{Ax, x> Il = 1, xeCo,

n

1:e.SS(A"Jl) = ﬂ f(A +K),
P

where I'((4),) denotes the numerical range of the truncated matrix (4), and %~
ranges through all the compact operators with lower triangular matrix.

The set ®g(A) is open. This follows from its definition and the inequality

1B7]

1B+ &)~ | <s—" (15)
1= [ell|B-1]]

with e<(||B~'||)”", applied to B = (4), —zI,. When S ={1,2...} we omit the
subscript and write simply @(4). We have (I'(4))° =®(4), which follows from

IRG, (A),)]| <k

a0 T((A),) (16)

Theorem 4. Suppose we have one of the two cases:

(a) D is determinate and S = {0, 1, ...},
(b) D nes |dn*1,n|72 = ©.
Then the following hold:
@)
Os(D)={z:R(z,D,)" > R(z,2)",ne S} =Q(2).
For xel, the convergence
}lierrsl R(z,D,)"x=R(z,2)"x

is uniform in compact subsets of @g(D).
(1) If ze®Os(D)NQ(Z + H") and A is compact, then ze Os(D + K).
(iii) Q(2)\[ess (D) = O5(D).
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Proof. (i) Banach-Steinhaus’ Theorem implies uniform boundness of the sequence
R(z,D,) from its strong convergence, thus we have inclusion in one direction.

Next we want to prove that the uniform boundness of ||R(z, D,)|| for ne S, n large
enough, implies that ze Q(2) and R(z, D,)" — R(z, 2)". We split the argument in two
parts.

Claim 1. If ze®g(D) and D satisfies (a) or (b) then & — zI is injective.

Suppose that p(z) e/,. Comparing the first row on both sides of (13) we get that
et R(z, D,) = ma(z), then recall the definition of m,(z) to get

(€,D(2)S),, = pu(2)eyR(z, Dy).

Taking norm on both sides of this equality and using the uniform boundness of
||R(z, D,))|| we get that 3, _¢||e!,D(z)|| < co. This leads to a contradiction whether we
have (a) or (b) (recall that pfj(z) = drle,n are the elements along the main diagonal of
D(z)S).

Thus, in both cases we must have p(z)¢/,. Since any nonzero vector v such
that (D — zI)v =0 must be a scalar multiple of p(z), this implies that & — zI is
injective.

Claim 2. If ze®Og(D) and 9 — zI is injective, then ze Q%) and R(z, D,)* - R(z,2)",
nes.

Take norms on both sides of (10). We get ||p,,(2)|| [|((71(2)),, — 7tm(2))|| < M which
together with ||p(z)|| = oo yields that {n,(z)},. Is convergent in b.
For xe C the right side of

X'(R(z,Dn)),y = R(z, D)) = X'y (2)((mn(2)), — m(2))

converges to zero as n,m— oo. This implies that R(z,D,)"x is convergent for
xeCy, neS. Let xel, and take x¢ in Cp such that ||x — x¢||<e/M. The right
side of

((R(Z’ Dn)); - R(Zv Dm)*)x = ((R(Z7 Dn))rn - R(27 Dm)*)(x - XO)
+ ((R(z,Dn)),, — R(z,Dp)")x0

has norm less than ¢ when n,m— oo. Thus {R(z, D,)"},.s converges in the strong
topology to some bounded operator #*. Identity (13) implies the matrix formula
R = —D(z)S + p(z)elR. Matrix —D(z)S is a right inverse for zI — D (see 4), hence R
is a right inverse for zI — D too. This means that zI — & has a bounded right inverse,
thus it is surjective. It is also injective, so we conclude that zI — & is invertible and
R = R(z,2). This completes the proof of the claim.

It remains to prove that convergence is uniform on compact subsets of @g(D). Let
K<cO®g(D) be a compact set. For every zo e K we can choose an open neighborhood
V(z9) of zy such that ||R(z, D,)||<M(zy) for every ze V(zy) and n>N(zy), neS

nesS
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(use inequality (15)). Choosing a finite covering of K from these neighborhoods, we
prove that the sequence {R(z, D,)}, . is uniformly bounded in K for n> N. Now we
use Vitali’s Theorem to obtain the uniform convergence of R(z, D,)"x for every xe/
uniformly in K.

(i) We use the following simple lemma in Hilbert spaces.

Lemma 4. If A, A are compact operators such that || A" — A || -0 and T, T, are
bounded operators such that 7 ,,— 7, then

170w = T A >0 and || A nT — A T||-0.

The proof is simple and it is omitted. The lemma is first proved when " is of finite
rank and then it is completed by using the fact that compact operators are norm
limits of finite rank operators.

The operator [ — A R(z,2) = (zI — (2 + #"))R(z,2) is invertible because it is
Fredholm and injective. {R(z, D,)"},.s converges strongly to R(z,Z)", so by the
previous lemma ||(#4"),R(z,D,) — A R(z,2)||—0. Thus I — (A"),R(z,D,) is inver-
tible for n big enough. Now the result follows from the equality

R(z, (2 +A),) = R(z, D,)(I = (A),R(z,D,)) "

(iii) Let ze (I(D + K)° nQ(D)) for some compact operator K. Then ze®g(D +
K) and since D — zI is a compact perturbation of D + K — zI we obtain by (ii) that
yAS] ®S(D) O

For proper complex Jacobi matrices, it is shown in [2] that (i) holds for any
subsequence S without the need of b. Let us see how this is true for determinate
Jacobi matrices.

Let D be a Jacobi determinate matrix and ze®g(D). If ||p(z)||*< oo then we
derive from (13) that %(z) is bounded. But then by (8) the boundness of %(z) is
equivalent to the indeterminacy of D. Thus ||p(z)||* = co. The reasoning continues
as in the proof of Theorem 4(i).

Imposing some extra conditions on D we can improve Theorem 4. The norms of
the functions 7, ,(z) in formula (11) are bounded by ||R(z, Z)||. Thus if p}(z) = oo
for some zeQ(2), as n— o0, ne S, then

-1
n—k _ e _ ukn(z
) @) = @ (14 kel ) g
i (@)
and using (11) we get
|(M_ks1 R(z, D))" — R(z, Z)*|| >0.

In particular, since pfj(z) = d,;_ll,,,,

lim d,1, = 0 = ©s(D) = ().
ne
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If |d,—1,] is a bounded sequence, we can improve Theorem 4. Define the sets

Zs(D) ={z:zea(D,), neS},

ZE (D) ={z: H{zy.},zn,€0(Dy,), zn, —z, np— 00, n €S}

It follows from (15) and (16) that we have the inclusions

Zs(D)cT'(D), Zg (D)<= (®s(D))".

Since T'(D) is a convex set, its complement has at most two connected
components. Define Q”(2) to be the union of the connected components of
Q(Z) which have nonempty intersection with (I'(D))° (again there are at most
two of them). Finally, write v(K,D,) for the number of eigenvalues of D,
in K<C.

Theorem 5. Suppose that T'(D)# C and that {|d,_1 |}, is @ bounded sequence. Then
we have

(i) For every compact set K=Q%(2), there is an infinite subsequence Sy < S such
that K\Og, (D) is at most finite.

(i) Q“(2)\ZF (D)= Os(D).

(iii) For every compact set K<Q™ (D), the sequence {v(K,Dy,)},. is uniformly
bounded.

Proof. Before we go into the main argument, we need to prove some preliminary
facts.

Claim 1. The matrix D is determinate. This is clear from the fact that {|d,, |}, is
bounded away from zero.

Claim 2. There is an infinite subsequence Sy = S such that lim,es, dy—1, = d, for some
deC. This is clear.

Claim 3. In every connected component of Q% (2) there are points z\ such that
1

||R(2179)|\<m- (17)

Let us prove this assertion. Since f(D) is not the whole plane, every connected
component of its complement contains a semiplane. Using (16) we can choose points
far enough from I"(D) such that (17) holds for every D,,. But D is determinate, thus
the strong convergence of R(z, D,) in (I'(D))° implies (17) for R(z, Z).

Now let K=Q% (D) be a compact set and assume without lost of generality that it
is in one of the connected components of Q* (D). Choose a connected open set V'
such that K< V<= V<=Q® (D) and z; eV for some z; satisfying (17). The sequence
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{ri14(2)du-1n},es, 1s uniformly bounded in V. Hence for some infinite subsequence
Sy =Sy we have (1 + ry_1(2)dy—1,,) = r(z) uniformly in V. The analytic function r(z)
cannot be identically zero since r(z;)#0 (use (17)). Thus for any ze K, except in a
finite set of points,
|(dni—117n + 7'1171,}1(2))71| == |(dn71,n(1 + rnfl.,n(z)dnfl,n)71 | <Mz

for some constant M, and neS; large enough. Now (i) follows from (11)
with k = 0.

(i) Let zpeQ™(2)\Z¢ (D). We are going to prove that for every infinite
subsequence Sp=S we can find an infinite subsequence S;<S; such that
20€ g, (D) and from this it will follow that ze @g(D). Take V(z) a neighborhood

of zp with V(z)<=Q™(2)\Z¥ (D). By (i) applied to V(z) there is some
S1<Sy such that ze®g, (D) for all except a finite set of points of V(zp).
In vparticular, {||R(z, Dy)|},cs5, 1is uniformly bounded for n large enough
and zeI' in some smooth closed Jordan curve enclosing z,. Since z¢ Z& (D),
every function R(z,D,), neS is analytic in V(zy) for n large enough. Thus
we have

1 1
R(z9,D,) = %/F p—— R(z,Dy) dz,

and from this follows that {R(zo, Dn)},c5s, is bounded for n large enough.

(iii) In order to prove the boundness of the sequence v(K, D,,) for ne S we use the
same technique as before. That is, we prove that to every subsequence Sy < S we can
find S} =S infinite, such that v(K, D,) is bounded for ne.S;. But this follows from
the discussion in the proof of (i) and the chain of inclusions

7(Dn) NQ(Z) ={z:pa(2) = 0} 0 QAZ) = {2 : pu(2)¢n1(2) = 0}
= {Z : dn_JI,H + rnfl,n(z) = 0} U

The following proposition contains a very weak form of approximation
of R(z,D,) to R(z,2) in any point of Q(Z). This fact is well known for Jacobi
matrices.

Proposition 1. Let ze Q(Z) and k=0. There is an infinite sequence of indices S such
that lim,cs(R(z, Dy)), = (R(2, D)),

Proof. Let zeQ(2)nQ(D,), by (14) we have (q(z)—7m(2)), = (pn(2))™"
(e R(z,2)),. Suppose the norm of right side is separated from 0 as n tends to
infinity. Then |p,(z)|* <|(eR(z, )),|]* for some &> 0 and every n. This implies that
p(z)eh, which contradicts zeQ(Z). Thus lim,cs(n,(2)), = (q(z)), for some
sequence of indices S. Now use (9) to complete the proof. [
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3. Applications

This section contains applications of the above results to problems in rational
approximation. Specifically, to asymptotics of orthogonal polynomials and
convergence of simultaneous Padé approximants. The link between the finite
sections method and these subjects has been known, and exploited, for some time,
see for example Brezinski [4], Magnus [10]. Other problems in rational approxima-
tion allow the same approach, as for example the reconstruction of planar domains
by their moments [7,13].

3.1. Asymptotics of polynomials

Let {p.(z)},-, be a sequence of polynomials with coefficients in C such that py = 1
and deg p, = n. To this sequence we can associate the Hessenberg matrix D such that

Dp = zp,

where p = (po,p1, ...)". Inversely, as we saw in Section 1, we can associate to a
Hessenberg matrix D the unique sequence of polynomials satisfying this equation
with pg = 1.

In this subsection we are going to study the asymptotics of the polynomials p,(z)
when their associated Hessenberg matrix is perturbed. Sequences like {p,(z)},,
can arise when considering orthogonal polynomials with respect to some scalar
product. More specifically, consider a scalar product {-,-> on the polynomials with
coefficients in C, <+,-» : C[z] x C[z] > C such that {(1,1) = 1. Applying the Gram—
Schmidt orthogonalization process to the basis z” we obtain a sequence of
orthonormal polynomials {p,(z)},, such that py = 1 and degp, = n.

Write {p1,},os {P2n}eo for two sequences of polynomials and Dy, D, for their
respective Hessenberg matrices. The Hessenberg matrices that we will consider in the
sequel are assumed to be determinate, so that the results of Section 2 can be applied.

The next theorem is well known for real and complex Jacobi matrices [2,11,15],
where a converse is also valid [2, Theorem 3.7].

Theorem 6. Let Dy, D, be Hessenberg matrices with Dy — D, = A a lower triangular
matrix representing a compact operator in l,. Then we have

pia-1(2)  pani(2)) 1 .
(pl,n(z) p2,n(z) )dnl.n 07

uniformly on compact subsets of ©(D)NQ(Z7). Under the conditions described in
Theorems 4 and 5 of Section 2, the same result holds for subsequences of indices.

lim

n— oo

Proof. Let ze®(D;) nQ(D,). We have
R(Z,Dl’,,) — R(Z, DQ’,,) = R(Z, Dg’”)(A)nR(Z, D]jn).

Since ©(D1) nQ(Z,) = O(D1)nO(D,) (use Theorem 4(ii)), R(z,D;,)" and
R(z,D,,)" converge strongly. Also A, is a sequence of compact operators that
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converges in the norm topology to A. Thus, the right member of the above equality is
a compact operator which by Lemma 4 converges in the norm topology to

R(z,2)) — R(z2,2,) = R(z,2,)AR(z,%2).

Compact operators take weakly convergent sequences to convergent sequences,
thus we have that {(R(z,D1,) — R(z,D2,))en, e,y —0. Using (13) one sees that

Pia-1(z) 1
R ZaD n)eny€n) =———— ;
{R(z,D1,) > Pn@) i
p2n71(2) 1
R ZaD n)ensn) =————— .
< ( 2') ? pZ,n(Z) dn—l,n

This yields the desired result. O

Denote by Bi(h) the k-Schatten class of bounded operators with finite norm
| - |- For 7 € Bi () we denote by det, (I + ) the Fredholm determinant of I + 7.
In the sequel we will make use of some of the properties of Fredholm determinants.

A reference for these and further facts is [6].
Let Dy, D, be Hessenberg matrices such that D; — D, = A is a lower triangular
matrix representing an operator AeBj(h). For k=/ define the functions

o~ 1 Q(2,)-C, o* 1n s Q(D1,)— C (the so-called perturbation determinants) by
¢* | (z) =det (I + AR(z, 7)),

¢ 1 ,,(z) =dete(I + AuR(z, D1.n)),
which are analytic in Q(2;) and Q(D, ), respectively. Notice that for £ = 1 one has
$1ald) = ey

Let us define the analytic operator-valued functions ®*(z), ®*(z) by

O*(z) =¢* (2)R(z,Z2), zeQ(Z))nQ(D),

Ok (2) =" | (2)R(z,D2,) z€Q(D1,) "Q(D1).

—1n

Then we have
D (2) = R(z,21)¢" () + AR(z,2,)) .
But from the Carleman inequality [6, Theorem XI1.9.26], we have
165, (2)(I + AR(z,21)) " || < exp(ClIAR(z, 21)]I)
< exp(ClIAl[F]IR(z, 20)[1),
for some constant C. Thus

104 (2)[| < || R(z, 21) || exp(CIA[[{||R(z, 21)]]),
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which implies that ®*(z) can be analytically extended to Q(Z). In the same way it
can be seen that ®*(z) is analytic in Q(Dy,).

Theorem 7. We have

(1) d)]:ln( ) ( )
(i) (¥]}())" > (‘D"( )’

uniformly in compact subsets of ©(Dy).

Proof. (i) It is enough to prove the convergence
1AnR(z, D1.n) — AR(z, Z1) || =0, (18)

uniformly in compact subsets of @(D;) and then the result follows from the
continuity of the determinant in By () [6, Lemma XI1.9.16]).

Lemma 4 of Section 2 still holds if we take the operators #", in By (/) and use the
norm || - ||, of Bi() instead of the spectral norm || - ||. By Theorem 4 we have that
R(z,D1,)" > R(z,%:)" uniformly on compact sets of (D) and also ||A, — A]|, —0
(see [6, Lemma X1.9.11]). Thus the convergence in (18) follows.

(ii) Using the Carleman inequality and reasoning as we did before for ®*(z), we
can see that the sequence of operators CD,’;(Z) is uniformly bounded on compact
subsets of @(D;). Therefore the sequence ®*(z)*x is normal for every xel, and by
Vitali’s Theorem it is enough if we prove its convergence in an infinite set with
accumulation points.

Without lost of generality we can suppose that @(D;) is not empty. Since D, is a
compact perturbation of D; the set ®(D;) nQ(D;) differs from @(D;) in at most a
denumerable set of isolated points. Hence it is open and not empty. Let

2e@(D)) N Q(Z,). Then, since (I +AR(z,%2,))" =1 — AR(z, Z,), we have
(@4(2)"x =, (2)((I+ AR(z,21)) ") R(z,21) ¥,
(@5(2)"x =" ,,(2) (I + AuR(z, D1,)) ') R(z, D1 ) x
Each factor of the second equality converges to the corresponding one of the first

equality. Convergence of the rightmost factor was proved in Theorem 4 of Section 2,
convergence of the other two factors was proved in (i). [

When D), D, are Jacobi matrices the function ¢' 1(z) is known as Szego’s function
or Jost’s function, and sometimes it is defined by the formula [15]

*1+Z A;,;4i(z) + A, jq541(2))p2,(2)-

Let’s see how this formula still holds in the general case. We denote the first row of
®'(z) by ¢'(2); q,(z) denotes the first row of R(z, D).
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Theorem 8. Let D; — Dy = A be a lower triangular matrix representing an operator of
trace class. Then

P D=1+ A (@ 0) (19)
= =
PO=01@+Y S A (2)eD(2), (20)
=0 i

for every zeQ(2)). The right side of (20) converges in I, and uniformly in compact
subsets of Q(2)).

Proof. Recall from the comparison equation that

¢! Dy(z) = €' Dy (z) + ¢ Dy (2)SAD;(z), (21)

which, dividing by p;, and equating the first component on both sides,
yields

P2a(2)
—— =14+ mn,(2)SAp,(z
pl‘n(z) 1,”( ) p2( )
n—1 n—1 i+1
Pru)(®)
=1+ Ay — i(2). 22
S ) @)

Let us assume that A is finite; that is, (A),, = A for some m. Then for n>m the
left side of (22) is @', ,(z) = det(I + AR(z,D1,)) = det(I + A(R(z, D1 ,)),,)- Let
zeQ(2,), by Propositibn 1 there is a subsequence of indices such that
(R(z,D1,)),,— (R(2,21)),,- Taking limits, the left side of (22) tends to
det(I + A(R(z,21)),,) = det( + AR(z,21)), thus we get

m

PO =143 A i(2pa(2)
=

for zeQ(2)).
Let A be of trace class and A, its finite sections. Then we have

@)@ =143" 3" Ajgr (o),
j=0 i=j

where ((/)l 1)(") is the ¢£1-functi0n associated to the perturbation by A,. Since A,

tends to A in the norm of B (l), we have that (¢, )<”) — ¢! |. Taking limits on both
sides of the last equality we get that the right side must be convergent too. This
implies (19).
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In order to prove (20) we start from (21), divide both sides by p; ,(z) and drop the
first component on both sides to get

ﬁfgi T2 (2) = M1 (2) + m10(2) SAD(2).

Following the same limiting argument used to prove (19), we get (20). [

We have proved asymptotics for orthogonal polynomials under conditions
on the Hessenberg matrix; that is, conditions on the parameters of the recurrence
relation. A general treatment of the perturbations of real Jacobi matrices can be
found in [15]. There the function qb],l (z) together with the formulas of Theorem 8 are
discussed and their connection with scattering theory is developed. In [2]
Beckermann proves some asymptotics analogous to ours for complex Jacobi
matrices and for bounded Hessenberg matrices. For bounded operators, these
asymptotics are also studied by Putinar [13]. We have used here the same technique
for the proofs.

We end this subsection discussing the case of orthogonal polynomials in the circle.
Let {p,},-, be a sequence of orthonormal polynomials in the circle with positive
principal coefficients

/Pnﬁ du = 6um,
I

for a positive measure u supported in I' = {zeC:zZ = 1} with infinite support.
It can be proved that in this case the associated matrix D satisfies DD’ = I, so
that D’ represents an isometry in /» and hence is bounded of norm 1. Moreover,
we have that

@(D) = (T(D))* = {zeC:|z|>1}.

If we take Y = (dy1,d)2, ...) the diagonal matrix formed with the upper nonzero
diagonal of D and write D = Y'S + A where A is lower triangular, then it follows
from DD’ = I that

YSA' + AS'Y' + AA" =T — Y2

It is well known that Szego’s condition on the measure u is equivalent to
>l —di iy1]< co. This implies that Y is invertible and the trace of the left side in
the last equality is finite. Hence the trace of AA’ is finite and A is a Hilbert—Schmidt
operator. Moreover, it follows from the above equality that YSA’ is equal to the
lower triangular part of AA’. Thus the sums of the absolute values of the elements in
each diagonal of A are convergent.

It follows from the discussion above that D is a perturbation of YS by a
Hilbert—Schmidt lower triangular matrix and thus the theorems of this section apply
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taking D; = Y'S and D, = D. After some calculations one obtains

n

pia(@) =[] &1z, pan(z) = pul2),

=0
Pn(2)
¢? T d 7 P d;
Ln( ) (H/ Odj,/+1 Z g J
so that
p”Z#—» C¢?,(z) uniformly in compact subsets of {zeC:|z|>1},

where C = exp(3_7, d; ;) [1,Zy dj j+1. Notice that the shifted polynomials are no
longer orthogonal with respect to a measure supported in the unit circle. However

our results imply
Pyi(2) 2 : .
—~— Ci¢p;(z) uniformly on compact subsets of {zeC: |z|>1},
anl

where C; = exp(3_ 7%, d; ) [1Z; d),j41-
3.2. Simultaneous Padé approximants

Let D be a banded Hessenberg matrix with m + 2 nonzero diagonals. Define the
infinite matrix of formal series

-1
[ZI—D] :ZOF7
=

and the formal series ¢;(z) = ef[z] — D]_le,-, i=0,..,m

It is known that the rational functions =, ;(z) = e} R(z, Dy)e;, i =0, ..., m, are the
simultaneous Padé approximants of the functions ¢;(z) associated to the sequence of
proper multiindices

r+1,r+1,...,r+Lirr...r),
———

j times m—j times

where n = mr + j, 0<j<m. The analytic counterparts of the formal series ¢,;(z) are
the analytic functions ¢;(z) = e R(z, D)e;. References for these and further facts are
[8,12].

The theorems of Section 2 imply convergence of approximants.

Theorem 9. If' D is determinate, then m, ;— q;(z) uniformly on compact subsets of
O(D). We have the estimate

-1
|9i(z) — 7, i(2)| <O (lek ) , z€0(D). (23)
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Under the conditions described in Theorems 4 and 5 of Section 2, the same results
hold for subsequences of indices.

Notice that for every zeQ(D) one has > /7, |pi(z)*| = oo. It is a known fact
that when {d,_1,},-, is bounded, the sequence {|p,(z)|},—, has geometric growth
in ©(D).

Proof. Convergence of the approximants follows at once from Theorem 4(i). Taking
norms on both sides of (10) yields estimate (23). [
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